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HSA is the most abundant protein in plasma and 
interstitial fluid. HSA binds a number of relatively 
insoluble endogenous compounds, such as unesterified 
fatty acids, bilirubin, and bile acids, as well as a wide 
variety of drugs

3
. HSA has 2 distinct sites (I and II) that 

interact with drugs. Structural studies indicate that fatty 
acid binding sites are distributed throughout the protein, 
whereas most drugs bind to 1 of the 2 primary binding 
sites on the protein

3
. Drug site I, the so-called warfarin 

site, binds bilirubin, phenytoin, and warfarin, to name a 
few. Site II (the diazepam site) binds benzodiazepines, 
probenecid, and ibuprofen.  

ABSTRACT  Plasma binding protein levels are lower in 
the newborn than in the adult and gradually increase 
with age. At birth, human serum albumin (HSA) 
concentrations are close to adult levels (75%-80%), 
while alpha 1-acid glycoprotein (AAG) is initially half the 
adult concentration. As a result, the extent of drug 
binding to HSA is closer to that of the adult than are 
those drugs bound largely to AAG. A model that 
incorporates the fraction unbound in adults and the ratio 
of the binding protein concentration between infants and 
adults successfully predicted the fraction unbound in 
infants and children. 

KEYWORDS:  plasma protein binding, fraction unbound, 
infants, children, newborn, albumin, alpha 1-acid 
glycoprotein. 

AAG is an acute phase reactant protein that contributes 
to the binding of a number of drugs, predominantly 
lipophilic cations

4
. There is considerable inter- and 

intrapatient variability in AAG concentration in response 
to various diseases, trauma, or chemical insult

5
. AAG 

exists as a mixture of 2 or 3 genetic variants in the 
plasma of most individuals

8, 9
. Many drugs have similar 

ligand binding constants, but other drugs (eg, 
promethazine, propafenone, amitriptyline, imipramine, 
warfarin, dipyridamole) demonstrated considerable 
differences between the 2 variants

10, 11
.  

 

INTRODUCTION 

Dramatic and rapid improvements in drug elimination 
efficiency occur during the first months of postnatal 
development

1, 2
. Yet few clinical pediatric studies have 

assessed changes in pharmacokinetics during infancy. 
This lack of specific clinical pharmacokinetic data for the 
infant population has confounded the design of drug 
dosage regimens and the assessment of risk associated 
with drug exposures in infants. A recent review proposes 
a tentative method to prospectively predict the 
contribution of hepatic P450-mediated metabolism and 
renal clearance due to glomerular filtration to infant 
systemic clearance at any age during the first 6 months 
following birth

2
.  

 

THEORETICAL FRAMEWORK 

Hepatic Clearance 
The well-stirred model of hepatic clearance provides a 
simple model to describe the relationship between the 
physiological determinants that govern hepatic clearance 
(1): 
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(1) In addition to modeling the ontogeny of clearance 

pathways themselves, pharmacokinetic theory involves 
considering the extent of drug protein binding to fully 
appreciate the impact of changes in intrinsic clearance. 
The current work develops a tentative model to predict 
the fraction unbound of a specific drug from knowledge 
of the fraction unbound in adult serum. An estimation of 
the extent of drug binding to plasma proteins may 
improve the prediction of drug elimination capacity 
during infant development.  

where QH represents the hepatic blood flow, ƒu is the 

fraction unbound in plasma, and ClI is intrinsic clearance 
12, 13

. These physiological determinants exhibit individual 
rates and patterns of maturation during infant 
development. The previous paper

2
 focused on modeling 

the development of enzyme activity as the primary 
determinant of hepatic clearance in infants. The current 
paper examines the ability to predict the fraction 
unbound in infants and children from adult values. *Corresponding author:  Patrick J. McNamara, Division of

Pharmaceutical Sciences, College of Pharmacy,
University of Kentucky, Lexington, KY 40536-0082 USA.
Tel.: 859-257-8656, Fax: (859) 257-7564, E-mail:
pmcnamar@uky.edu 

Protein Binding 

The ratio of bound drug concentration (B) to free drug 
concentration (F) can be written in terms of the number 
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Binding Protein Concentration Ratio  of binding sites (n), the molar protein concentration (P), 
and the affinity constant (KA), as shown in Equation 2: 

Numerous studies have examined the concentration of 
HSA and AAG in umbilical cord blood. The concentration 
of HSA is approximately 36 g/L in cord blood compared 
to 45 g/L in adult plasma

14-20
. The infant-to-nonpregnant-

adult concentration ratio for HSA is 0.81 (Table 1). In 
pregnant adults, HSA concentrations are lower 
throughout the later stages of pregnancy and appear to 
rebound to nonpregnant adult levels by 1 month 
postpartum

14, 21, 22
, resulting in a ratio of 1.16 (Table 1). 

For the purposes of the predictive model, comparisons 
to nonpregnant adults are most relevant. 

1
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(2)

For most drugs in their therapeutic range, the product of 
F and KA is much less than 1; therefore, the fraction 
unbound is drug concentration independent (ie, linear 
binding). Hence, Equation 2 could be written as Equation 
3a and Equation 3b for the infant and adult, respectively. 

 infant A, infant
infant

B nP K
F

�  
  (3a) 

 ,adult A adult
adult

B nP K
F

�  
  (3b) 

Table 1 - Serum Protein Concentration Ratios for 
Newborn Infants Compared to Maternal or Nonpregnant 
Adults for Alpha 1-Acid Glycoprotein (AAG) or Serum 
Albumin (HSA). 

  Pinfant/Padult  

Protein Adult (%) References 

AAG Mother 38.0 (14, 22, 35) 

 Nonpregnant adult 38.5 (14, 16-18, 23, 
24) 

HSA Mother 116.3 (14, 22, 35, 36) 

 Nonpregnant adult 81.1 (14, 16-20) 

If the intrinsic properties of the protein (n and KA) are 
assumed to remain constant with age, Equation 3b may 
be rearranged to solve for a common KA and 
subsequently substituted into Equation 3a. Such a 
rearrangement produces Equation 4, which predicts the 
B/F in infants in terms of the relative abundance of 
binding protein and the adult B/F. 
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�  
(4) 

Cord AAG concentrations average 0.24 g/L compared to 
0.60 g/L for normal adult plasma

14,
 
16,

 
23,

 
24

, which results 
in an average ratio of 0.38 for AAG (Table 1). In contrast 
to HSA concentrations, AAG concentrations in the 
mother at delivery are similar to those of nonpregnant 
adults (Table 1). Following delivery, AAG concentrations 
rise and peak around 1 week postpartum 

14, 22
. Some 

studies also show an increase in neonatal serum AAG in 
the week following delivery

14
. 

From a pharmacokinetics perspective, the fraction 
unbound is more valuable and more frequently reported 
than is B/F ratios.  Fraction unbound drug in the plasma 

ƒu is defined as the ratio of F to total drug concentration 

is the sum of F and B (equation 5). 
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(5) 

B/F Prediction  

Figure 1 illustrates the relationship between age and 
infant-to-adult protein concentration ratio for the 2 major 
binding proteins from birth through adolescence (HSA: r2

 
= 0.400; AAG: r2

 = 0.460). The inter- and intraindividual 
variation appears more pronounced for AAG than for 
HSA at all ages (Figure 1).  

By substituting Equation 4 into 5, a relationship can be 
derived that predicts the fraction unbound for infants in 
terms of the ratio of the binding protein concentration 
(infant to adult) and the adult fraction unbound. 
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Figure 2 depicts the relationship between the B/F in cord 
(infant) plasma as a function of the B/F of the same drug 
in adult serum. For those drugs bound primarily to HSA 
a good correlation exists, while the relationship for drugs 
bound to AAG deviates considerably from unity. Fitting 
Equation 4 to the HSA data yields a high correlation 
coefficient (r2

 = 0.970) and an estimate of Pinfant/Padult of 
0.592, which approximates the ratio described earlier 
(Table 1). The 95% confidence interval (0.535-0.660) 
does not include unity; hence, incorporating the binding 
protein concentration ratio proves to be a better model or

As the ratio of abundance of binding proteins 
approaches unity, the fraction unbound in infants 
approaches adult values. The use of adult intrinsic 
clearance values may need to be adjusted for 
differences in binding for highly bound drugs in cases 
where the plasma protein concentration is significantly 
lower in infants. 

 2



AAPS PharmSci 2002; 4 (1) article 3 (http://www.pharmsci.org). 

 

 

 

Figure 1 – Ratio of protein concentration in newborn or child relative to adult serum concentrations for serum albumin (HAS, 
left frame) and alpha 1-acid glycoprotein (AAG, right frame). 

 

predicting B/F in infants than relying on the adult B/F 
alone. 

 

The data are limited and more varied for AAG binding. 
The fit of Equation 4 to the AAG data yields a modest 
correlation coefficient (r2

 = 0.713) and an estimate of 
Pinfan described earlier for AAG (Table 1). The 95% 
confidence interval (0.140-0.398) does not incorporate 
unity, again indicating that Equation 4 is a superior 
model for predicting B/F in infants. However, Figure 2 
clearly shows that the relationship is less robust for AAG 
than for HSA because of several factors. First, the 
interindividual variation in AAG concentrations is 
considerably larger for AAG than for HSA. Second, all of 
the binding is ascribed to 1 protein in Equation 4. Most of 
the AAG-bound drugs are also bound to HSA. Combined 
with the limited number of observations for AAG, these 
factors contribute to the uncertainty of the prediction.  

Fraction Unbound Prediction 

Since protein binding data are more frequently 
presented and more useful clinically, Table 2 contains 
the observed and predicted fraction unbound as a 
function of age and binding protein for infants up to 1 
year of age. This approach uses Equation 6 and requires 
estimates of the predicted binding protein concentration 
ratio (Figure 1) for the respective binding protein and 
age, as well as the adult fraction unbound, to predict the 
infant fraction unbound. Overall, the observations with 
respect to infants hold for plasma obtained from infants 
of any age. The model incorporating the binding protein 
ratio appears to more closely mimic the observed 
fraction unbound in infants than does the fraction 
unbound in adults alone. Moreover, the fraction unbound 
for HSA-bound drugs was more readily predicted than 
that for AAG. 

Figure 2 - B/F in infants (cord plasma) for a variety of 
drugs as a function of the adult B/F for drugs bound to 
HAS (closed circles).  The lines represent weighted 
regression analysis of Equation 4 to the data. The inset 
represents an enlarged figure around the origin. 
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Table 2- Observed and Predicted (Equation Serum Protein Binding Free Fraction (fu) Values for a number of Drugs Bound 
Predominantly to Alpha 1-Acid Glycoprotein (AAG) or Human Albumin (HSA), as a Function of Infant Age. 

   Child Adult 

Age Major 
Binding 
Protein  
(% Adult) 

Drug Name fu 
Observed

fu  
Predicted

References fu References 

Premature: 1 
day 

AAG (53.4) Alfentanil  0.350 0.171 (37) 0.099 (38, 39) 

  Fentanyl  0.230 0.263 (37) 0.160 (40) 

 HSA (76.4) Salicylic acid 0.175 0.154 (36) 0.123 (19, 25, 36, 41)

Term: 1 day AAG (53.4) Alfentanil  0.269 0.171 (37, 38) 0.099 (38, 39) 

  Alprenolol 0.370 0.219 (14) 0.130 (14) 

  Desipramine 0.377 0.382 (19, 25) 0.248 (19, 25, 42) 

  Disopyramide 0.790 0.463 (30) 0.315 (30, 43) 

  Fentanyl  0.300 0.263 (37) 0.160 (40) 

  Lidocaine  0.585 0.433 (23, 24) 0.290 (23, 24, 44, 45)

  Naloxone  0.715 0.687 (16) 0.540 (16, 46) 

  Propranolol 0.418 0.219 (24, 35) 0.130 (24, 47, 48) 

  Quinidine 0.400 0.219 (49) 0.130 (49, 50) 

  Sufentanil  0.201 0.137 (38, 51) 0.078 (38, 51, 52) 

  Verapamil 0.396 0.179 (35) 0.104 (35, 53) 

 HSA (76.4) Ampicillin  0.900 0.848 (26) 0.810 (26, 54) 

  Atropine  0.789 0.785 (19) 0.737 (19, 55) 

  Carbamazepine 0.330 0.262 (22, 56) 0.213 (22, 56, 57) 

  Chloramphenicol  0.541 0.471 (19) 0.405 (19, 58) 

  Chlordiazepoxide  0.060 0.040 (19) 0.031 (19, 59) 

  Cisplatin  0.150 0.115 (60) 0.090 (60) 

  Clonazepam 0.173 0.155 (31) 0.123 (31, 61) 

  Cloxacillin  0.110 0.080 (14) 0.062 (14, 62) 

  Diazepam 0.035 0.023 (24) 0.018 (24, 27, 63) 

  Digitoxin  0.084 0.064 (19) 0.050 (19, 64) 

  Digoxin 0.791 0.814 (65) 0.770 (64, 65) 

  Furosemide  0.025 0.021 (29) 0.016 (29, 66) 

  Meticillin 0.335 0.341 (19, 25) 0.284 (19, 25) 

  Morphine 0.690 0.727 (19) 0.670 (19, 67) 

  Nitrofurantoin 0.316 0.375 (19, 25) 0.314 (19, 25, 68) 

  Oxyphenbutazone 0.104 0.093 (19) 0.073 (19) 

  Para-aminosalicylic 
acid 

0.491 0.388 (19) 0.326 (19) 

  Paracetamol 0.632 0.591 (19) 0.525 (19) 

  Penicillin G 0.520 0.466 (26) 0.400 (26) 

  Phenacetin 0.610 0.541 (19) 0.474 (19) 

  Phenobarbital 0.658 0.528 (19, 26) 0.461 (19, 26, 69) 

  Phenytoin 0.181 0.153 (19, 22, 26, 
70) 

0.122 (19, 22, 26, 70, 
71) 

  Promethazine  0.321 0.323 (19, 25) 0.268 (19, 25) 

  Salicylic acid 0.056 0.045 (19, 25) 0.035 (19, 25) 

  Sulfamethoxydiazine 0.099 0.075 (19, 25) 0.059 (19, 25) 

4 



AAPS PharmSci 2002; 4 (1) article 4 (http://www.aapspharmsci.org). 

   Child Adult 

Age Major 
Binding 
Protein  
(% Adult) 

Drug Name fu 
Observed

fu  
Predicted

References fu References 

  Thiopental 0.177 0.171 (19, 20, 25) 0.136 (19, 20, 25, 72, 
73) 

  Tubocurarine 0.690 0.611 (24) 0.545 (24, 74) 

  Valproate 0.121 0.191 (22, 75, 76) 0.153 (22, 76, 77) 

Term: 1-7 days AAG (53.4) Alprenolol 0.360 0.219 (14) 0.130 (14) 

  Cloxacillin  0.140 0.080 (14) 0.062 (14, 62) 

Term: 7-28 days HSA (76.4) Ceftriaxone  0.285 0.115 (78) 0.090 (78, 79) 

3-12 months AAG (54.9) Lidocaine  0.320 0.426 (23) 0.290 (23, 24, 44, 45)

  Quinidine 0.220 0.214 (49) 0.130 (49, 50) 

  Sufentanil  0.115 0.141 (51) 0.083 (38, 51, 52) 

 HSA (77.2) Ceftriaxone  0.160 0.114 (78) 0.090 (78, 79) 

  Phenytoin 0.147 0.152 (70) 0.122 (19, 22, 26, 70, 
71) 

  Valproate 0.143 0.107 (75, 80) 0.085 (22, 76, 77) 

 

DISCUSSION 

Rapid improvements in drug clearance occur during the 
first months of postnatal development

1
. However, our 

understanding of the influence of clearance pathway 
ontogenesis and drug elimination efficiency in infants 
remains incomplete because of a lack of specific clinical 
pharmacokinetic data. We have used in vitro CYP450 
activity data in fetal and infant livers and in vivo probe 
substrates of renal function to develop a general but 
tentative mathematical model that describes the 
ontogeny of individual clearance pathways in infants. 
Although invaluable, this approach is limited without a 
clear understanding of the ontogenesis of plasma protein 
binding in this population as well.  

The model proposed herein is simple and 
straightforward. In the absence of direct measurements 
of plasma protein binding, the fraction unbound in an 
infant can be predicted from knowledge of the binding 
characteristics of the drug in adults and the known 
ontogeny for the binding protein (Figure 1). Clearly, there 
is less variability and there are better model predictions 
for a drug bound mainly to HSA. The enhanced 
variability associated with AAG is not unexpected given 
that it is an acute phase reactive protein subject to larger 
variability than HSA.  

It should be noted that, in addition to lower HSA 
concentration, there is a considerable body of work that 
suggests that bilirubin and free fatty acids may influence 
the extent of binding of some drugs in the newborn 

14,
 
20,

 
22,

 
25

. For example, Nau et al reported that the elevations 
in free fatty acids shortly after birth result in increased 
free fractions of diazepam and its main metabolite

27
. 

Ehrnebo et al reported that hyperbilirubinemia reduced 

the binding of a number of acidic drugs
26

. Elevated free 
fatty acids and bilirubin may explain some of the 
intersubject variance for a given drug within a population 
of infants, but these factors do not appear to be a global 
factor in the present analysis. One of the main 
assumptions in the model is that the affinity constant is 
similar in infants and adults. As a first approximation, this 
assumption appears to be well founded for most drugs, 
as evidenced by Figure 2 and Table 2. Herngren et al 
reported similar KA values for newborns and mothers for 
cloxacillin (bound mainly to HSA) and for alprenolol 
(AAG bound) 

14
. Pacifici et al reported that KA values for 

furosemide were very similar in cord and adult plasma
29

. 
Echizen et al reported that alterations in disopyramide 
were a function of binding capacity (ie, protein 
concentration) rather than affinity

30
. By contrast, other 

groups have reported lower infant KA values for 
clonazepam

31
, ceftriaxone

32
, and cefonicid and 

cefuroxime
33

. Brodersen and Honore reported lower 
binding constants for the warfarin-binding site on 
isolated infant HSA, relative to HSA isolated from adult 
serum

34
. These investigators reported similar binding 

constants for the diazepam-binding site in infant 
compared to adult HSA

34
.  

In the absence of direct infant measurements, Equation 
6 provides a simple model to predict the fraction 
unbound in infant serum. The model appears to work 
well for a variety of drugs exhibiting an extensive range 
of binding. 
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